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SOLVING THE STRONG-SHOCK ALGORITHM
FOR EXPLOSIVE YIELD AND SPATIAL ORIGIN

H. C. Goldwire, Jr.
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ABSTRACT

We present a linear least squares solution to the strong-shock algorithm
where underground explosive yield and spatial origin are unknown. Also
presented are methods for determining standard error estimates for the
determined quantities and an illustration of the solution with several sets of

I. INTRODUCTION

The yield of an underground explosion can be
determined from measurements of the propagation
of the explosion-produced shock wave through the
ambient geological medium. For a portion of the
shock expansion, the shock radius grows as a power-
law function of time. In particular, the shock posi-
tion is given by

m,a( ¢ )" , (1)

VK] wl/3

where time t is measured in milliseconds from ex-
plosion time, distance R is in meters from the explo-
sion center, and yield W is in kilotons. Detailed
calculations by Eilers, using the 1D F® code with
realistic equation-of-state data and tuned' to
reproduce the von Neuman point-source, constant-
gamma, analytical solution, showed for tuff and
granite that a and b were sensibly constant and were
independent of yield.? These calculations also
provided insight as to the range of applicability of
the strong-shock algorithm. Bass and Larsen® have
performed similar calculations for other media. This

algorithm largely forms the basis of the
hydrodynamic yield-determination techniques used
at the Los Alamos Scientific Laboratory (LASL).

Since spring 1975, we have routinely fielded ex-
periments to determine hydrodynamic yields of
LASL nuclear events. Analysis of the data was
based on Eq. (1) using the Eilers constants a = 6.29
and b = 0.475, and the results have usually agreed
with those obtained from other techniques. We poin
out, however, that these experiments were conduc-
ted at the Nevada Test Site (NTS) under controlled
circumstances: we knew the effective center of the
explosion (ECE), i.e., the point of origin of the ex-
plosion, and could provide independently deter-
mined explosion-time fiducials.

Under less controlled circumstances, the absolute
spatial and temporal accuracy of the measuring
system may be less than ideal or the ECE may be
unknown as, for example, in a verification situation
under the Peaceful Nuclear Explosives Treaty
(PNET)‘. Accordingly, we have generalized Eq. (1)
to

R(t) + R = w073 (g co)b . (2)



Here, R(t) is the experimentally measured shock-
front position at time t, with R and t determined
relative to a presumed spatial and temporal origin of
the explosion. R, and t, are additive corrections to R
and t that correct them to the actual explosion time
and location. Ideally, experimental R(t) data would
be fitted to Eq. (2) to determine any or all of the
quantities W, R,, to, 8, and b. In practice, a and b
are usually assumed known, and the combinations
of unknowns we most commonly expect to encoun-
ter are (1) W, R, (2) W, t,, or (3) W, R,, t..

It is the purpose of this report to present a linear
least squares solution to the yield and R-shift (W,
R,) problem and to illustrate its use with several
examples.

II. ANALYSIS

For this problem, we assume that a, b, and t, are
known and rewrite Eq. (2) as

R(t) = ¢ x) (£) +d x, () @)
where

c =3 w(l"b)/3, d = -Ro , (4)
x (8) = (¢ + co)b, () 51 . (5)

Equation (3) can be solved by linear least squares
regression for the desired constants ¢ and d and for
the standard error estimates o., g4, and covariance
o.a. Given the data set (t;, Ry, oy; i = 1, N), where o,
is the statistical uncertainty to be associated with
the value R;, we define the auxuliary sums

N
1 1
A=) = D=1 =R x (t)
2 7 Ry % {8y
=1 o] =1 o]
N N .
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Then the desired least square quantities and the
corresponding uncertainties are

c = (DA - BE)/A , d = (CE - BD)/A ¢))
and

2 2

oc-A/A,od-c/A,acd-—B/A, (8
where

A = (AC - 82)

In terms of these quantities, our original quan-
tities W and R, and their formal uncertainties then
are given by

w_(%)3/(1-1,) oy 7T < (122)
R = -d o = /C/A . 9)

[o}

If the individual standard deviations oy are un-
known or if an unweighted fit is desired, the o, in
Eqgs. (6) should all be set equal to a constant o, (to
be determined). Note that in this case o, will cancel
out of Egs. (7), allowing ¢ and d to still be deter-
mined. For Egs. (8), however, we can obtain an un-
biased statistical estimate for o, from ¢g, the stan-
dard deviation of the data about the fit. In par-
ticular, we calculate g from

N 1/2
(1-b)/3 b,2
121 [Ri+R°-aw (:i+:°)]
o} .
R N -2
(10)

or with less precision from the auxiliary sums

_{c®c+2cdB - 2cD + ad® - 2dE + F

R N -2

1/2

[of

(11)




III. TWO EXAMPLES

To illustrate this least squares method, we pre-
sent in Tables I and II two sets of simulated
hydrodynamic data. The labels for the quantities in
these tables are explained in Table III.

A. Properties of the Generated Data Sets

Using Eq. (1) with a yield of 150 kt, data were
generated at 100-us intervals over the time span 1.0-
3.5 ms, the approximate range normally analyzed
for such a yield. These algorithmic data were then
modified by adding 5.000 m to all points (thereby
simulating the effects of an origin shift or an ab-
solute calibration error) and by adding random-
noise deviations to simulate the effects of noisy
data. The noise levels chosen, rms deviations of 4.1
and 5.3 cm per point, correspond to high-quality
data, but such levels are achievable today. For a
medium sonic velocity of 3.0 m/ms, the data are all
presonic and hence usable. (The sonic time and
radius would be 5.27 ms and 33.30 m, respectively.)

B. Results of the Least Squares Fits

Tables I and Il illustrate calculation results at ad-
ded noise levels of 4.1 and 5.3 cm, respectively. The
least squares solutions agree very well with the
"correct" answer WALG = 150 kt and RSHIFT =
—5.00 m. Also, the formal ranges of uncertainty for
the two determined quantities, WFIT + SIGW and
RSHIFT + RSIGRO, do encompass the correct
answer. Work is in progress on a statistical analysis
of man such examples as are presented in these
tables.

It should be pointed out that analyses of actual
hydrodynamic data will not, in general, be so suc-
cessful. Among the reasons for this are the following.

1. Less data may be obtained.

2. Noise sources may not be strictly Gaussian.

3. The algorithmic region of data may be restric-
ted or difficult to identify.

4. The algorithm is only an approximation to ac-
tual physics of expansion.

5. Explosions may not be point sources.

IV. CONCLUSIONS

This least squares method enables one to efficien-
tly and effectively solve Eq. (2) for R, and W,
assuming that t,, &, and b are known. This method
was shown to work successfully for the simulated
data of Tables I and II. A number of statistical
quantities of interest were also calculated and are
presented in the tables. To the extent that data
noise sources are Gaussian and the data follow the
strong-shock algorithm, this least squares method is
statistically the most powerful and appropriate
technique to use for solving for yield and shifts of
origin.

REFERENCES

1. D.D. Eilers, "A Numerical Integration of a 97 kt
Explosion in Sea Level Air," Los Alamos Scientific
Laboratory report LAMS-2985 (December 1963).

2. D. D. Eilers, Los Alamos Scientific Laboratory,
private communication, June 1975.

3. R. C. Bass and G. E. Larsen, "Shock Propaga-
tion in Several Geologic Materials of Interest in
Hydrodynamic Yield Determinations," Sandia
Laboratories, Albuquerque, report SAND 77-0402
(March 1977).

4, "Treaties on the Limitation of Underground
Nuclear Weapon Tests and on Underground
Nuclear Explosions for Peaceful Purposes," US
Arms Control and Disarmament Agency Publ. 87
(May 1976).



RSHIFT=
RSIGRO=

3
I
x
=1
[

VB A 3d

OV~

WA N W N NI NS NI PO AI NI NI DI D) b D b oD b cad b b e b =
N -

w

AUXILIARY QUANTITIES

SX =
sX2=
SRX=
SR =
SR2=

LINEAR LEAST SQUARES TEST CASE
(noise level =~ 4.1 cm per point)

PROPERTIES OF GENERATED DATA SET

WALG= 150.00
vs= 3.00 RS=  33.30

PROPERTIES OF LEAST SQUARES FIT TO DATA
=5.0119

RALG*5M
20.1170
20.817
21.4846

32.409%

7S= TAOD=  0.000 00

50

3.7648762E+0Y
5.6021318€+01
1.0351156E+03
6.9914299€+02
1.9143594€+ 04

04179
99754

WCALC
150. 1588
149.3268
150.9011

150.6170
150.8126
148,734

149.5532
1.6321

NOISE SIGMA= .0411
NOISE MEAN= 2




TABLE II

LINEAR LEAST SQUARES TEST CASE
(noise level ~ 5.3 cm per point)

PROPERTIES OF GENERATED DATA SET

NPTS= 26 WALG: 150.00 TS$®  5.27 TAGD: 0.000 TSTART:  1.00 NOISE SIGMA= .0534
Vs= 3.00 RS=  33.30 RADD= 5.000 TSTOPs  3.50 NOISE MEAN= 0047

PROPERTIES OF LEAST SQUARES FIT TO DATA CSAB= 36876
WFITz  148.9673 RSHIFT=  =5.0312 SIGR= 054268 CSR= 03474 AFIT=  6.25240
S1cw= 2.4941 RSIGRO= <0649 RATIO= 1.017015 FACT=  1.00878 SIGA*  .01841

POINT TIME  RALG+SM RDATA RFLT DELR NOISE WCALC W-HALG
1 1.00 20.1170 20.1877  20.1300 0577 0706 152.2501 2.250"
2 1.10  20.81717  20.8596  20.8292 .0303 .0626  150.6090 .6090
3 1.20 21.4846  21.4800 21.4938 -.0358 -.0245 147.1249 -2.8751
4 1.30  22.1234 22.1322 22.1339 -.0017 0088 148.8850 -1.1150
5 1.40 22.7369 22.7321  22.7466 -.0165 ~.0048 148.2708 =1.729%
é 1.50 23,3278  23.3159  23.3348 0210  =.0119  147.99517 -2.0049
7 1.60 23.8983 23.8081 23.9067 -.0986 ~.0903 144.5741  -5.4259
8 1.70 26.4505 24.4871  24.4581 .0289 .0386  150.2394 «23%%
9 1.8Q0 24.9858 24,9901 24.79238 =-.0027 0044  148.8535  -1.1465
10 1.90 25.5057  25.5268 5121 0147 <0211 149.5774 =.4226
" 2.00 26.0116  25.92%1 26 0172 -.0921 -.0863 145.2690 =4.7310
12 2.10 26,5041  26.5447  26.5093 0354 .0606  150.3754 < 3754
13 2.20 26.9845 27.0232 26.9892 .0340 .0386 150.2902 . 2902
14 .30  27.4537 27.5346  27.4577 .Qrés .0809 151.9070 1.9070
15 2.0 27.9122 27.8967 27.9157 -.0190 ~.0155 148.2626 -1.7374
16 2.50 28.3608 28.4044 28.3638 . 0406 0835  150.4541 <4561
114 2.60 28.8001 2B.8796 28.8025 077 L0795  151.7497 1.749?
18 2.70 29.23086 29.1265 29.2325 - 1060 -.1061  145.2778  =4.7222
19 2.80 29.6528 29.7250 29.6542 .0708 0722  151,43Q7 1.4307
20 2.90 30.0672 30.0289  30.0¢81 -.0392 ~-.0383 147.6394 -2.3606
ry 3.00 30.4761  30.4934  30.4743 .0188 L0192 149.5986 =.A014
22 3.10  30.8740 30.8478 30.8739 -.0261 -.0262 148.1088 -1.8912
23 3.20 31,2671 31.18% 1.2666 -.0852 -.0857 166.2254 -=3.7746
26 3.30  31.6539 31.6406 31.6529 -.0123  -.0133  148.5747  =1,4253
25 3.40 2. 32.0541 32.03N .21 L0196 149.6324 . 3676
26 3.50 32.4096  32.4554  32.4074 0479 L0060  150.4634 &34

MEANS -.0000 L0047  148.9861 ~1.0139
SIGMA .0543 <0534 2.1314 2.1314

AUXILIARY QUANTITIES

cC=  15.00877 SX = 3.7648762E+Q"
SC= 0hk24 $x2=  5.6021318e+01
00= S. 03119 SRx=  1,0352710€+03

- 06494 SR = 6.9926087€+02

So=
SCo=  =.96227 SR2=  1.91495Q1E+04



TABLE III

DEFINITIONS
Label Explanation

NPTS Number of generated algorithm points

WALG Algorithmic yield

VS Sonic velocity of medium

TS,RS Sonic time and radius

TADD,RADD Time and radius increments added to
algorithmic data

TSTART,TSTOP Time span of data

NOISE SIGMA Standard deviation of random noise deviates

NOISE MEAN Mean of deviations

WFIT Least squares fitted value of yield W

SIGW ow

RSHIFT Least squares fitted value of R,

RSIGRO Or,

SIGR oR

RATIO og/noise sigma

CSR An "approximation" to oy

FACT CSR/ox

AFIT Least squares fitted value of a, assuming
W fixed at value WALG

ASIG Oa

RALG + 5M Algorithmic data + 5:000 m

RDATA Data analyzed = RALG + 5M + NOISE

RFIT Resulting fit to data

DELR Deviations, RDATA - RFIT

NOISE Noise deviates added to algorithmic data

WCALC Calculated yields for individual data points
corresponding to fitted values of W and R,

W-WALG WCALC - WALG

Unlabeled quantities below columns labeled DELR, NOISE,
WCALC, and W-WALG in Tables I and II are means and standard
deviations of entries in the corresponding columns.

CcC c

SC g

DD d

SD Oa

SCD Ocd

SX B [

SX2 C

SRX D Multiplied by o
SR E

SR2 F




